
THE SQUARE DANCE FRAMEWORK - A FRAMEWORK 
APPROACH FOR MODULE-BASED SERIOUS GAMES 

Alexander Waldmann, Juan Haladjian, Damir Ismailović, Bernd Brügge 
Technische Universität München, Munich, Germany 

{waldmann, juan.haladjian, damir.ismailovic, bernd.bruegge}@cs.tum.edu 

ABSTRACT 

In educational serious games, learning is encouraged through gaming experience. A major goal in modern serious games 
is to dynamically adapt the learning content to the player, in order to enrich the learning experience. This paper presents a 
framework for the development of module-based games, used throughout a project at the Technical University Munich 
for the development of a serious game composed of multiple mini-games. It defines and attempts to bridge the conceptual 
gap between classical game and serious game development. For this purpose, it employs elements from the game 
development domain as well as state of the art technologies for feedback through adaptivity. 

KEYWORDS 

Serious Game Engineering, Adaptivity, Framework 

1. INTRODUCTION 

Serious games allow the players to take advantage of the fun experienced in a game and learn through their 
experience. 

Many serious games consist of different modules, which can be scenarios, levels, etc. In order to optimize 
the game's development time, the different modules are split among the developers, who work on each 
module independently. In the end, the different modules need to be integrated, which often requires a big 
effort. 

Well known game development frameworks like Unity, Gamemaker or TangoPhysics (Haladjian 2012) 
ease the development task by providing ready-to-use game elements, like images, sounds, particle systems, 
behaviors, etc. However, they do not deal with higher-level functionality like the ability to define a game’s 
structure.  

We introduce a framework for defining a game’s structure as a collection of modules. Modules may be 
any part of a game, typically a scene or a level. Our framework lets users define modules’ structure and 
dependencies between different modules. Different modules can then be developed independently and 
integrated afterwards. Module integration conflicts are reduced thanks to a common module structure, 
enforced to every module through our framework. 

 The purpose of this paper is twofold: we first present a case study where we analyze the development 
process of a module-based serious game, which highlights the need for our framework. We then introduce 
Square Dance, a framework for the collaborative creation of module-based serious games. 

2. BACKGROUND 

There is no single definition for the term “Serious Games”. Different definitions stress for instance 
pedagogical or technical aspects. As (Susi 2007) state, “Even a brief survey of the literature soon reveals that 
there seems to be as many definitions available as there are actors involved”. Due to this lack of one 
unambiguous definition of the problem domain, the understanding of serious games in the context of this 
project relied on the conceptual model of (Yusoff 2009). This model illustrates the divergence of concepts 



(game concepts vs. pedagogical concepts) in the domain of serious games. (Yusoff 2009) identify elements 
from the game application domain as well as the teaching domain. The teaching domain is simplified as 
„Capability, instructional content, intended learning outcomes, learning activity and reflection”. The gaming 
domain is reduced to „Game mechanics, games genre, game achievement and game attributes“. Although the 
relationship between these concepts is described in detail, the model lacks an approach to overcome the 
conceptual gap between the two fields. This gap has to be closed in order to implement a serious game. 

3. CASE STUDY 

We developed an educational serious game in a period of two years of time. The purpose of the game is 
teaching mathematics (addition, subtraction, counting, number drawing) to pre-school children.  The game 
consisted of six different levels or mini-games. Each mini-game was given to different groups of students as 
part of a lab course at the Technical University of Munich.  The project leader then adapted the different 
mini-games, integrated them into a single application, and delivered the resulting game. 

 The integration of the mini-games into one product was difficult to handle. The project allowed us to 
identify two major issues. The first one is related to the quality of the game created. The resulting project had 
a high amount of repeated non-consistent functionality. A good example was the game’s menu. Each mini-
game had it’s own menu, implemented in different ways. Adaptivity represented another issue. The way in 
which the adaptivity framework was used by different students, lead to the creation of mini-games with an 
heterogeneous difficulty level. Some games were too hard for it’s target users, others were too easy. These 
issues were the most time consuming, as different parts of every mini-game had to be reimplemented. 

The second issue is related to the working methodology followed. Communication often caused time 
overhead, as the usage of frameworks, best practices and mini-game conventions had to be explained to every 
team member.  

4. FRAMEWORK 

The framework is divided in two components. The Director and the Module. The first one takes care of 
managing the control flow. The second one is responsible for the high-level structure of games (so called 
mini-games, or levels). All modules register at the Director by supplying themselves via the registerModule() 
method. To create a module a developer constructs a subclass of the Module class (see Figure 1). The 
Module class supplies the subclasses with a set of hook methods, which get triggered if the director decides 
to hand over control. 

 The Director decides if and which module can be started and if the control can be handed over to it if 
certain requirements are fullfilled (e.g. a score has been reached, see Figure 1). 

Such a requirement has to be a subclass of the Requirement class (see Figure 1) and implement the hook 
method “requirementFullfilled”. Through this workflow developers are capable of controlling when their 
modules get invoked. 

The creation of modules is eased by a graphics framework, in the concrete implementation Cocos2D that 
focuses on animations and movements of objects.  
In addition to the graphics library, an Overlay class (see Figure 1) is introduced to create a consistent style 
within the independently developed modules. This Overlay class eases the creation of controls and optical 
elements that are used throughout all other modules in the same way. Abstract factories supply each 
developer with the same set of controls throughout all modules. This approach aims to increase the usability 
and the conceptual model in the mind of the learner.  

 



Figure 1: The 7 base classes for the Square Dance Framework. 
 
The ManagedObject class (see Figure 1) can be used to create very simple objects (which appear in the game 
world) and share them with other modules. It also conforms to the interfaces described in (Ismailovic  2011) 
for the adaptivity of the game-world and allows the game to change behavior, according to the players 
success. A game object can be registered and saved in a resource manager, which persists data if needed.  
To use this feature, developers simply subclass the ManagedObject class and call a store method in the 
ResourceManager class (see Figure 1). This concept is similar to the concept in Apples CoreData. 
Through this approach the Resource Manager allows the sharing of Managed Objects between modules to 
create for example a shared inventory. 

4.1 Architecture 

The architecture is based on strict layering, yet it is not enforced in the framework. The dependencies of the 
modules on the graphical framework, as well as on the adaptivity framework are shown in Figure 2. 
 
The upper and bottom layer are developed as part of the framework. The middle layer is implemented as a set 
of mini-games, their corresponding requirements and objects. The upper layer shows the Director. This 
component appears as the managing component for the modules. 
 

 
Figure 2: Components and architecture of the framework 

 



It uses the inversion of control principal (the framework calls the modules, not the modules the framework) 
only to some degree and passes the control completely to the module if possible. This promotes the 
development of the modules, as there are not numerous hook methods needed in the module. 

 

5. CONCLUSIONS 

The development of serious games is an active and rapidly growing research area. With the Square Dance 
Framework, we intend to make the development of such games easier.  

Different developers either build modules based on different structures, which makes their integration 
difficult, or they invest a considerable effort in communication in order to make the different modules 
compatible. Our framework enforces the usage of common modules’ interfaces, making integration of 
different modules easier. 

Adaptive games guide the users with individual feedback in their decision making process. The adaptivity 
of the content (difficulty, behavior of the environment) is based on the learner’s behavior and success in 
completing a task. The framework delegates this problem to the adaptivity framework (Ismailovic ́ 2011). The 
framework needed to be adapted to the game would tend to use the adaptivity framework in different ways, 
leading to inconsistencies among the different modules. Our framework provided a higher-level common 
interface to the adaptivity framework, which enforced the way in which the framework should be used by 
each module.  

When faced with the design of a game the structure of objects inside the game world can become 
complex. Consequently a basic object composition was introduced, allowing the simple creation of objects in 
the game and the sharing between the modules later on (e.g. a trophy or an inventory item in the game) at 
runtime. Those objects are the primary connection between the adaptivity framework and the game. They 
connect the game world with the adaptivity algorithms. 

To allow the use of best practices, such as how to efficiently handle animations and movements of 
graphical objects, a number of well-known libraries were introduced. In this project, the „cocos2d“ library 
was used, yet the concept of the framework is not bound to this game framework. 
 
In combination with frameworks like TangoPhysics, the Square Dance framework allows the development of 
full-blown serious games from a high level of abstraction. 

Still, research in this field needs to be intensified. In the future, different game design patterns will be 
supported by our framework, not only the module-based one. 

 
 

REFERENCES 

Cocos2D, 2010. Learn iPhone and iPad cocos2d Game Development,  
Apress, USA, New York City 
 
Haladjian J. et al, 2012.  A quick prototyping framework for adaptive serious games with 2D physics on mobile touch 
devices. IADIS Mobile Learning 2012 (ML 2012) 
 
Ismailović D., 2011. Adaptivity in Serious Games. PhD thesis, Chair for Applied Software Engineering, Technische 
Universität München, Munich.  

 
Susi T. et al., 2007. Serious Games - An Overview, Technical Report HS-IKI-TR-07-001, School of Humanities and 
Informatics, University of Skövde, Sweden 

 
Yusoff A. et al, July 2009. A Conceptual Framework for Serious Games.  
Advanced Learning Technologies, 2009. ICALT 2009. Ninth IEEE International Conference. Riga, Latvia, pages 21–23.  
 


